
OpenTNSim Documentation
Release 1.1.2

Mark van Koningsveld

Jun 01, 2023

CONTENTS:

1 Installation 3

2 OpenTNSim 5

3 Contributing 9

4 Credits 13

5 History 15

6 Version conventions 17

7 Indices and tables 19

Python Module Index 21

Index 23

i

ii

OpenTNSim Documentation, Release 1.1.2

OpenTNSim is a python package for the investigation of traffic behaviour on networks to compare the consequences of
different traffic scenarios and network configurations.

Welcome to OpenTNSim documentation! Please check the contents below for information on installation, getting
started and actual example code. If you want to dive straight into the code you can check out our GitHub page or the
working examples presented in Jupyter Notebooks. The examples in the notebooks directory are also available as an
online book.

CONTENTS: 1

https://github.com/TUDelft-CITG/OpenTNSim
https://github.com/TUDelft-CITG/OpenTNSim/notebooks
https://happy-bush-0c5d10603.1.azurestaticapps.net

OpenTNSim Documentation, Release 1.1.2

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

1.1 Stable release

To install OpenTNSim, run this command in your terminal:

Use pip to install OpenTNSim
pip install opentnsim

This is the preferred method to install OpenTNSim, as it will always install the most recent stable release.

If you do not pip installed, this Python installation guide can guide you through the process.

1.2 From sources

The sources for OpenTNSim can be downloaded from the Github repo.

You can either clone the public repository:

Use git to clone OpenTNSim
git clone git://github.com/TUDelft-CITG/OpenTNSim

Or download the tarball:

Use curl to obtain the tarball
curl -OL https://github.com/TUDelft-CITG/OpenTNSim/tarball/master

Once you have a copy of the source, you can install it with:

Use python to install
python setup.py install

3

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/TUDelft-CITG/OpenCLSim
https://github.com/TUDelft-CITG/OpenCLSim/tarball/master

OpenTNSim Documentation, Release 1.1.2

4 Chapter 1. Installation

CHAPTER

TWO

OPENTNSIM

This page lists all functions and classes available in the OpenTNSim.model and OpenTNSim.core modules. For exam-
ples on how to use these submodules please check out the Examples page, information on installing OpenCLSim can
be found on the Installation page.

2.1 Submodules

The main components are the Model module and the Core module. All of their components are listed below.

2.2 opentnsim.model module

Vessel generator.

class opentnsim.model.Simulation(simulation_start, graph, scenario=None)
Bases: Identifiable

A class to generate vessels from a database

add_vessels(origin, destination, vessel=None, vessel_generator=None, arrival_distribution=1,
arrival_process='Markovian')

Make arrival process

environment: simpy environment arrival_distribution: specify the distribution from which vessels are gen-
erated, int or list arrival_process: process of arrivals

run(duration=86400)
Run the simulation

duration: specify the duration of the simulation in seconds

class opentnsim.model.VesselGenerator(vessel_type, vessel_database, loaded=None, random_seed=3)
Bases: object

A class to generate vessels from a database

arrival_process(environment, origin, destination, arrival_distribution, scenario, arrival_process)
Make arrival process

environment: simpy environment arrival_distribution: specify the distribution from which vessels are gen-
erated, int or list arrival_process: process of arrivals

generate(environment, vessel_name, scenario=None)
Generate a vessel

5

OpenTNSim Documentation, Release 1.1.2

2.3 opentnsim.core module

Main module.

class opentnsim.core.ContainerDependentMovable(compute_v, *args, **kwargs)
Bases: Movable, HasContainer

ContainerDependentMovable class Used for objects that move with a speed dependent on the container level
compute_v: a function, given the fraction the container is filled (in [0,1]), returns the current speed

property current_speed

class opentnsim.core.ExtraMetadata(*args, **kwargs)
Bases: object

store all leftover keyword arguments as metadata property (use as last mixin)

class opentnsim.core.HasContainer(capacity, level=0, total_requested=0, *args, **kwargs)
Bases: SimpyObject

Mixin class: Something with a storage capacity capacity: amount the container can hold level: amount the
container holds initially container: a simpy object that can hold stuff total_requested: a counter that helps to
prevent over requesting

property filling_degree

property is_loaded

property max_load

return the maximum cargo to load

class opentnsim.core.HasLength(length, remaining_length=0, total_requested=0, *args, **kwargs)
Bases: SimpyObject

Mixin class: Something with a storage capacity

capacity: amount the container can hold level: amount the container holds initially total_requested: a counter
that helps to prevent over requesting

class opentnsim.core.HasLoad(H_e, H_f, T_e, T_f, filling_degree=0, *args, **kwargs)
Bases: object

Mixin class with load dependent height (H) and draught (T). The filling degree (filling_degree: fraction) will
interpolate between empty and full height and draught.

property H

Calculate current height based on filling degree

property T

class opentnsim.core.HasResource(nr_resources=1, priority=False, *args, **kwargs)
Bases: SimpyObject

Something that has a resource limitation, a resource request must be granted before the object can be used.

• nr_resources: nr of requests that can be handled simultaneously

6 Chapter 2. OpenTNSim

OpenTNSim Documentation, Release 1.1.2

class opentnsim.core.Movable(v: float, *args, **kwargs)
Bases: Locatable, Routable, Log

Mixin class: Something can move.

Used for object that can move with a fixed speed

• geometry: point used to track its current location

• v: speed

• on_pass_edge_functions can contain a list of generators in the form of on_pass_edge(source: Point, desti-
nation: Point) -> yield event

property current_speed

move(destination: Optional[Union[Locatable, Geometry, str]] = None, engine_order: float = 1.0, duration:
Optional[float] = None)

determine distance between origin and destination, and yield the time it takes to travel it Assumption is that
self.path is in the right order - vessel moves from route[0] to route[-1].

pass_edge(origin, destination)

class opentnsim.core.Neighbours

Bases: object

Can be added to a locatable object (list)

• travel_to: list of locatables to which can be travelled

class opentnsim.core.Routable(route, complete_path=None, *args, **kwargs)
Bases: SimpyObject

Mixin class: Something with a route (networkx format)

• route: list of node-IDs

• position_on_route: index of position

property graph

class opentnsim.core.Routeable(*args, **kwargs)
Bases: Routable

Old name for Mixin class: renamed to Routable.

class opentnsim.core.VesselProperties(type, B, L, h_min=None, T=None, safety_margin=None,
h_squat=None, payload=None, vessel_type=None,
renewable_fuel_mass=None, renewable_fuel_volume=None,
renewable_fuel_required_space=None, *args, **kwargs)

Bases: object

Mixin class: Something that has vessel properties This mixin is updated to better accommodate the Consume-
sEnergy mixin

• type: can contain info on vessel type (avv class, cemt_class or other)

• B: vessel width

• L: vessel length

• h_min: vessel minimum water depth, can also be extracted from the network edges if they have the property
[‘Info’][‘GeneralDepth’]

2.3. opentnsim.core module 7

OpenTNSim Documentation, Release 1.1.2

• T: actual draught

• safety_margin : the water area above the waterway bed reserved to prevent ship grounding due to ship
squatting during sailing, the value of safety margin depends on waterway bed material and ship types. For
tanker vessel with rocky bed the safety margin is recommended as 0.3 m based on Van Dorsser et al. The
value setting for safety margin depends on the risk attitude of the ship captain and shipping companies.

• h_squat: the water depth considering ship squatting while the ship moving (if set to False, h_squat is
disabled)

• payload: cargo load [ton], the actual draught can be determined by knowing payload based on van
Dorsser et al’s method. (https://www.researchgate.net/publication/344340126_The_effect_of_low_water_
on_loading_capacity_of_inland_ships)

• vessel_type: vessel type can be selected from “Container”,”Dry_SH”,”Dry_DH”,”Barge”,”Tanker”.
(“Dry_SH” means dry bulk single hull, “Dry_DH” means dry bulk double hull), based on van
Dorsser et al’s paper. (https://www.researchgate.net/publication/344340126_The_effect_of_low_water_
on_loading_capacity_of_inland_ships)

Alternatively you can specify draught based on filling degree - H_e: vessel height unloaded - H_f: vessel height
loaded - T_e: draught unloaded - T_f: draught loaded - renewable_fuel_mass: renewable fuel mass on board [kg]
- renewable_fuel_volume: renewable fuel volume on board [m3] - renewable_fuel_required_space: renewable
fuel required storage space (consider packaging factor) on board [m3]

property T

Compute the actual draught. This will default to using the draught passed by the constructor. If it is None
it will try to find one in the super class.

get_route(origin, destination, graph=None, minWidth=None, minHeight=None, minDepth=None,
randomSeed=4)

Calculate a path based on vessel restrictions

property h_min

2.4 Module contents

8 Chapter 2. OpenTNSim

https://www.researchgate.net/publication/344340126_The_effect_of_low_water_on_loading_capacity_of_inland_ships
https://www.researchgate.net/publication/344340126_The_effect_of_low_water_on_loading_capacity_of_inland_ships
https://www.researchgate.net/publication/344340126_The_effect_of_low_water_on_loading_capacity_of_inland_ships
https://www.researchgate.net/publication/344340126_The_effect_of_low_water_on_loading_capacity_of_inland_ships

CHAPTER

THREE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

3.1 Types of Contributions

3.1.1 Report Bugs

Report bugs at https://github.com/TUDelft-CITG/OpenTNSim/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

3.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

3.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

3.1.4 Write Documentation

OpenTNSim could always use more documentation, whether as part of the official OpenTNSim docs, in docstrings, or
even on the web in blog posts, articles, and such.

9

https://github.com/TUDelft-CITG/OpenTNSim/issues

OpenTNSim Documentation, Release 1.1.2

3.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/TUDelft-CITG/OpenTNSim/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

3.2 Get Started!

Ready to contribute? Here’s how to set up OpenTNSim for local development.

1. Fork the OpenTNSim repository on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/OpenTNSim.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv opentnsim
$ cd opentnsim/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 opentnsim tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. The style of OpenTNSim is according to Black. Format your code using Black witht the following lines of code:

$ black opentnsim
$ black tests

You can install black using pip.

7. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

8. Submit a pull request through the GitHub website.

10 Chapter 3. Contributing

https://github.com/TUDelft-CITG/OpenTNSim/issues

OpenTNSim Documentation, Release 1.1.2

3.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.4, 3.5 and 3.6, and for PyPy. Check CircleCI and make sure that the
tests pass for all supported Python versions.

3.4 Tips

To run a subset of tests:

$ py.test tests.test_opentnsim

To make the documentation pages $ make docs # for linux/osx

For windows $ del docsopentnsim.rst $ del docsmodules.rst $ sphinx-apidoc -o docs/ opentnsim $ cd docs $ make html
$ start explorer _buildhtmlindex.html

3.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

3.3. Pull Request Guidelines 11

OpenTNSim Documentation, Release 1.1.2

12 Chapter 3. Contributing

CHAPTER

FOUR

CREDITS

4.1 Development Lead

• Mark van Koningsveld

• Fedor Baart

4.2 Contributors

Various MSc projects

• Jeroen van der Does de Willebois, 2019. Assessing the impact of quay-wall renovations on the nautical
traffic in Amsterdam: A simulation study. MSc thesis. Delft University of Technology, Civil Engineering and
Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

• Leonore Vehmeijer, 2019. Measures for the reduction of CO2 emissions, by the inland shipping fleet, on
the Rotterdam-Antwerp corridor. MSc thesis. Delft University of Technology, Civil Engineering and Geo-
sciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

• Sophie Ensing, 2019. Agent-based modeling and simulation of public transport to identify effects of net-
work changes on passenger flows. MSc thesis. University of Amsterdam, Faculty of Science, Data Science,
Information Studies. Amsterdam, the Netherlands.

• Loes Segers, 2021. Mapping inland shipping emissions in time and space for the benefit of emission policy
development: A case study on the Rotterdam-Antwerp corridor. MSc thesis. Delft University of Technology,
Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

13

https://www.tudelft.nl/citg/over-faculteit/afdelingen/hydraulic-engineering/sections/rivers-ports-waterways-and-dredging-engineering/staff/van-koningsveld-m/
https://www.deltares.nl/en/experts/fedor-baart-3/
http://resolver.tudelft.nl/uuid:22eddd89-21a2-4819-ba1f-ee905a829364
http://resolver.tudelft.nl/uuid:1abd88e0-9ab6-47fd-a503-2f19ba13bbff
http://scriptiesonline.uba.uva.nl/scriptie/690471
http://resolver.tudelft.nl/uuid:a260bc48-c6ce-4f7c-b14a-e681d2e528e3

OpenTNSim Documentation, Release 1.1.2

14 Chapter 4. Credits

CHAPTER

FIVE

HISTORY

5.1 1.1.2 (2022-04-05)

• Final edits for Jiang et al (2022)

5.2 1.1.1 (2022-03-24)

• Updated energy module Jiang et al (2022)

5.3 1.1 (2022-03-17)

• Release energy module Jiang et al (2022)

5.4 1.1-beta.2 (2021-05-26)

• Release in preparation of SmartShipping project

5.5 1.1-beta.1 (2021-05-26)

• Release in preparation of SmartShipping project

5.6 1.0.0 (2020-05-07)

• Release in preparation of SmartShipping project

15

OpenTNSim Documentation, Release 1.1.2

5.7 0.1.0 (2019-07-18)

• First release to PyPI and rename to OpenTNSim

16 Chapter 5. History

CHAPTER

SIX

VERSION CONVENTIONS

This package is being developed continuously. Branch protection is turned on for the master branch. Useful new
features and bugfixes can be developed in a separate branch or fork. Pull requests can be made to integrate updates into
the master branch. To keep track of versions, every change to the master branch will receive a version tag. This page
outlines the version tags’ naming convention.

Each change to the master branch is stamped with a unique version identifier. We use sequence based version identifiers,
that consist of a sequence of three numbers: the first number is a major change identifier, followed by a minor change
idenfier and finally a maintenance identifier. This leads to version identifiers of the form:

major.minor.maintenance (example: 1.2.2)

The following guideline gives an idea what types of changes are considered major changes, minor changes and main-
tenance:

• Major changes (typically breaking changes) -> major + 1

• Minor changes (typically adding of new features) -> minor + 1

• Maintenance (typically bug fixes and updates in documentation -> maintenance + 1

17

OpenTNSim Documentation, Release 1.1.2

18 Chapter 6. Version conventions

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

19

OpenTNSim Documentation, Release 1.1.2

20 Chapter 7. Indices and tables

PYTHON MODULE INDEX

o
opentnsim, 8
opentnsim.core, 6
opentnsim.model, 5

21

OpenTNSim Documentation, Release 1.1.2

22 Python Module Index

INDEX

A
add_vessels() (opentnsim.model.Simulation method),

5
arrival_process() (opentnsim.model.VesselGenerator

method), 5

C
ContainerDependentMovable (class in

opentnsim.core), 6
current_speed (opentnsim.core.ContainerDependentMovable

property), 6
current_speed (opentnsim.core.Movable property), 7

E
ExtraMetadata (class in opentnsim.core), 6

F
filling_degree (opentnsim.core.HasContainer prop-

erty), 6

G
generate() (opentnsim.model.VesselGenerator

method), 5
get_route() (opentnsim.core.VesselProperties

method), 8
graph (opentnsim.core.Routable property), 7

H
H (opentnsim.core.HasLoad property), 6
h_min (opentnsim.core.VesselProperties property), 8
HasContainer (class in opentnsim.core), 6
HasLength (class in opentnsim.core), 6
HasLoad (class in opentnsim.core), 6
HasResource (class in opentnsim.core), 6

I
is_loaded (opentnsim.core.HasContainer property), 6

M
max_load (opentnsim.core.HasContainer property), 6
module

opentnsim, 8
opentnsim.core, 6
opentnsim.model, 5

Movable (class in opentnsim.core), 6
move() (opentnsim.core.Movable method), 7

N
Neighbours (class in opentnsim.core), 7

O
opentnsim

module, 8
opentnsim.core

module, 6
opentnsim.model

module, 5

P
pass_edge() (opentnsim.core.Movable method), 7

R
Routable (class in opentnsim.core), 7
Routeable (class in opentnsim.core), 7
run() (opentnsim.model.Simulation method), 5

S
Simulation (class in opentnsim.model), 5

T
T (opentnsim.core.HasLoad property), 6
T (opentnsim.core.VesselProperties property), 8

V
VesselGenerator (class in opentnsim.model), 5
VesselProperties (class in opentnsim.core), 7

23

	Installation
	Stable release
	From sources

	OpenTNSim
	Submodules
	opentnsim.model module
	opentnsim.core module
	Module contents

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	1.1.2 (2022-04-05)
	1.1.1 (2022-03-24)
	1.1 (2022-03-17)
	1.1-beta.2 (2021-05-26)
	1.1-beta.1 (2021-05-26)
	1.0.0 (2020-05-07)
	0.1.0 (2019-07-18)

	Version conventions
	Indices and tables
	Python Module Index
	Index

